June. 14, 2022



### A 64 × 64 SPAD-Based Indirect Time-of-Flight Image Sensor with a depth range of 50m

International SPAD Sensor Workshop 2022

**BYUNGCHOUL PARK** 



# Outline

- Motivation SPAD-based Time-of-Flight sensor
- Proposed SPAD-based iToF sensor
  - Pulse-shaping circuit
  - Analog pulse counter
- Measurement results
- Conclusion



# 2 types of ToF sensors





S. W. Hutchings [JSCC' 19]

- Time-of-Flight (ToF) Sensors
  - Direct: Long-range (> 100m) ☺, large pixel pitch, 3-D stacking ⊗
  - Indirect: High pixel resolution, high frame rate 🙂, short-range 😕



#### **Trend in ToF sensors**



M.-S. Keel [ISSCC' 21]



A. R. Ximenes [JSSC' 19]

- Multiple integration capacitor (iToF), up to 4 taps
- Small pixel pitch, down to 3.5 µm (iToF), 9.2 µm (dToF)
- 3-D stacked wafer (iToF, dToF both)
  - Resulting in a high production cost ⊗



- Average of 35 m is required for emergency braking (at 100 km/h)
- Required distance: 50 m, FoV: 20 °
  - Pixel resolution: at least 60 (to detect pedestrian)
  - iToF sensor: high frame rate, high accuracy, pixel scalability√

# **Principle of indirect ToF**



- Correlation between reflected light and time-window for iToF sensors
  - Integrate photon current in selected time-window (PD)
  - Counting photon in selected time-window (SPAD)
- Immune to background light <sup>(c)</sup> (removed as an offset)



- PW / DNW junction SPAD with retrograde DNW guard-ring
  - Rounded corner shape > maximize active area
  - Integrated DNW > thin cathode (1  $\mu$ m)
  - Improved fill factor > up to 50 % (previous work, SSC-L' 20)

#### Time-gated photon counting V<sub>SPAD</sub> Photon SPAD Photon Vs Vs $\phi_{TRG}$ $\phi_{TW}$ Clk $\phi_{TW}$ (ON) V<sub>PR</sub> **0-**Counter NCOUNT Q NCOUNT Pulse-shaping circuit

- Logic gate (pulse-shaping circuit) is attached for gating V<sub>S</sub>
  - $V_{S}$  propagates to counter only  $\Phi_{TW}$  is on (enable correlation)
- However, passive recharge slows down counting rate > requires active recharge circuit



# Implementing pulse-shaping circuit



- 2 inverters are added to sharpen pulse edge of V<sub>S</sub>
  - First inverter: skewed between P/N for threshold control
  - Second inverter: added for the polarity of the  $\Phi_{AR}$
- Pulse-shaping circuit: inverter outputs and "NOR gate"



# Implementing pulse-shaping circuit



- 3-input NOR gate: gated by  $\Phi_{TW}$  for time-gated photon counting
  - Operation rate of pulse counter: determined by feedback delay
- Multiple counter: motion artifact↓, light efficiency↑



#### Selecting pulse counter



**Digital counter** 

Analog counter

- Digital / analog pulse counter
  - Digital : high speed, linearity, no additional readout circuit large pixel pitch, 3-D stack process 8
  - Analog : area-efficient, pixel-level implementation 
     medium operation speed, limited linearity 
     Image: Speed and Speed and

#### Charge-sharing based counter





- Charge sharing between integration (C<sub>I</sub>) & degeneration capacitor (C<sub>D</sub>)
- 2 NMOS transistors used as switches ( $\Phi_{TRIG}$  and  $\Phi_{AR}$ )
  - Counting step,  $\Delta V_{OUT} \propto V_{OUT}$  > limited linearity & no tunability
- Additional technique for improving linearity

#### **Charge-injection based counter**





- Source follower ( $M_F$ ) is added, separating  $C_D$  from  $V_{OUT}$ 
  - Constant charge-injection and offers tunability by changing V<sub>SF</sub>
  - Suffers threshold variation, resulting in counting step variation

#### **Proposed analog counter**





- Amplifier regulates source voltage of M<sub>F</sub> to V<sub>REF</sub>
  - Constant charge-injection without suffering threshold variation
  - Offers step tunability by adjusting V<sub>REF</sub>

#### **Pulse counter comparison**



| Structure                           | Digital | Charge-<br>sharing | Charge-<br>injection | Proposed |
|-------------------------------------|---------|--------------------|----------------------|----------|
| Occupied area<br>[µm <sup>2</sup> ] | 1200    | $40^{\dagger}$     | 44†                  | 60†      |
| Simulated linearity                 | -       | 6 bit              | 8 bit                | 9 bit    |
| Tunability                          | Х       | Х                  | 0                    | 0        |

<sup>†</sup>Estimated value with  $C_I = 250$  fF

- Digital counter occupies largest area
- Analog counter shows limited linearity (< 8-bit)
  - Charge-injection based counter may suffer threshold variation
- Proposed counter achieves high linearity (> 9-bit), tunability <sup>(C)</sup>



#### **Proposed counter: Discharge phase**



- Amplifier: 5 transistor with 600 nA bias, 30 dB DC gain
- $M_{F1}$ ,  $M_{F2}$ : NMOS switches ,  $C_P$ : parasitic capacitor at  $V_P$ 
  - $C_P$ : charged from ground to  $V_{REF}$ ,  $C_I$ : discharged by  $Q_P$  ( $\Phi_{TRIG}$ )
  - Counting step  $\Delta V_0 = C_P / C_I * V_{REF}$



#### **Proposed counter: Reset phase**



- $C_P$  is reset to ground ( $\Phi_{DIS}$ ), remaining still until next trigger
  - Discharge and reset phases: should be separated
  - Requires delay between control signals ( $\Phi_{TRIG}$  and  $\Phi_{DIS}$ )

# Schematic of the proposed pixel



- AND gate: adding delay between  $\Phi_{AQ}$  and  $\Phi_{AR}$ 
  - Disabling SPAD:  $\Phi_{AQ}$  to low ( $V_{PIX} > V_{EX}$ )
  - M<sub>AR</sub>: turned off to avoid short circuit current √
- PMOS source follower & row switch: pixel readout

#### Layout of the proposed pixel





- Pulse shaping: 8.5 µm, counter: 20.5 µm length
  - Layout optimization: C<sub>IA</sub> and C<sub>IB</sub>
  - Source follower: below column readout line



### Chip micrograph



- 110 nm FSI process, core area: 3 x 3 mm<sup>2</sup>
  - 64 x 64 SPAD pixel array
  - 256 single-slope ADC (4 ADCs / column)



- Global reset, pixel integration: 125 µs, pixel readout: 1.8 ms
- Frame rate of the proposed sensor: 520 fps (2-D)
  - 3-D frame: consists of four 2-D frames
  - Two 3-D frames (high, low  $f_{demod}$ ) > 65 fps (depth image)



- VCSEL (850 nm) emission power: 1.16 mW/cm<sup>2</sup> (@ 1 m)
  - VCSEL emission angle: 20 °, FoV of optical lens: 17 °
  - Optical filter > CWL: 850 nm, FWHM: 10 nm, OD: 4.0
- Power consumption: 42.7 mW



- 64 x 64 SPAD array dark count rate (DCR)
  - 33 (median) / 1800 cps (mean)
- Photon detection probability (PDP)
  - Peak: 28.2 % (@ 480 nm), 5.85 % (@ 850 nm)

# **Comparison with other SPADs**



- Proposed SPAD and SPADs in similar technology nodes
  - Achieves lowest normalized DCR and comparable PDP
  - Low excess bias voltage, deep junction (PW/DNW)

### Step tunability of analog counter





- Measured counting step versus V<sub>REF</sub>
  - $V_{REF}$  tuned from 0.2 to 1 V, counting step > 0.6 to 3 mV
  - $V_{REF} = 0.5 \text{ V}, C_P = 0.75 \text{ fF}, C_I = 250 \text{ fF} > 9-\text{bit counter}$



- Measured noise and step variation of proposed counter

  - Measured noise  $(1-\sigma)$ : > 0.7 LSB for entire codes
  - Step variation: 8.3 %, offset mismatch and C<sub>P</sub> variation



- Measured DNL / INL of analog pulse counter array
  - DNL: +0.25 / -0.19 LSB, INL: +0.22 / -0.72 LSB
  - Outliers: less than 3 % of pixel population
  - Proposed pulse counter: operates as 9-bit counter 🙂



- Measured depth uncertainty  $(1-\sigma)$  result in range of 5 to 50 m (65 fps)
  - Depth uncertainty: STD of distance over 400 measurements
  - 1.35 to 11.3 cm in range of 5 to 50 m
  - Relative depth uncertainty: 0.22 % (at 50 m)

# Depth uncertainty result with BGL





- Measured depth uncertainty varying background-to-signal ratio (BSR)
  - Variable IR source: applied as background (target @ 1.5 m)
  - Depth uncertainty increases until counter saturation
  - Accumulating multiple frames improves depth uncertainty

#### **3-D measurement results**



 $f_{demod}$  = 50 MHz

- Sample 3-D images of Agrippa statue
  - Demodulated with maximum designed frequency (50 MHz)
  - Result shows detail with high demodulation frequency

# **3-D** measurement results Phase (degree) -90 -180

BGL = 120 klx





- Sample 3-D images with 120 klx sunlight
  - Vertical wall: 20 m, 8-frame accumulation (16.25 fps)
  - Optical bandpass filter: reduce sunlight by 95 %



- Depth uncertainty improvement by frame accumulation
  - Increasing frames by 4 times > more details & lower noise
  - Optical bandpass filter & frame accumulation

> 3-D image is reconstructed successfully!

|                            | This Work               | B. Park                | C. S. Bamji          | T. Okino                | E. Manuzzato     | M. Perenzoni        | C. Niclass        | S. W                      |                            |
|----------------------------|-------------------------|------------------------|----------------------|-------------------------|------------------|---------------------|-------------------|---------------------------|----------------------------|
|                            |                         | SSC-L20 [1]            | ISSCC18 [2]          | ISSCC20 [3]             | ISSCC22 [4]      | SSC-L20 [5]         | JSSC14 [6]        | JS                        |                            |
| Photodetector              | SPAD                    | SPAD                   | PD                   | SPAD<br>(Vertical)      | SPAD             | SPAD                | SPAD              | STAD                      | SI AD                      |
| ToF technique              | iToF                    | iToF                   | iToF                 | iToF + dToF             | dToF             | dToF                | dToF              | dToF                      | dToF                       |
| Key feature                | 2-tap pulse<br>counter  | 1-tap pulse<br>counter | 2-tap<br>photogate   | 1-tap pulse<br>counter  | Per-pixel<br>TDC | Per-column<br>TDC   | Per-column<br>TDC | 16-Shared<br>TDC          | 128-Shared<br>TDC          |
| Technology [nm]            | 110                     | 110                    | 65 (BSI)             | 65                      | 110              | 150                 | 180               | 40 / 90                   | 45 / 65                    |
| Pixel resolution           | 64 × 64                 | 64 × 64                | 1024 × 1024          | 1200 × 900              | 64 × 64          | 50 × 40<br>(2-SPAD) | 202 × 96          | 256 × 256<br>(4 × 4 SPAD) | 256 × 256<br>(16 × 8 SPAD) |
| Pixel pitch [µm]           | 32                      | 32                     | 3.5                  | 6                       | 48               | 38.5 × 33.5         | N/A               | 9.2<br>(36.8 × 36.8)      | 19.8<br>(316.8 × 158.4)    |
| Fill factor [%]            | 26.3                    | 17.3                   | 100<br>(with μ-lens) | N/A                     | 12.9             | 4.8-15.3            | 70                | 51                        | 31.3                       |
| Background [klx]           | <b>120</b> <sup>†</sup> | $90^{\dagger}$         | 25                   | N/A                     | 30               | 18                  | $100^{\dagger}$   | 1                         | 3                          |
| Emitter wavelength<br>[nm] | 850                     | 850                    | 860                  | N/A                     | 905              | 650                 | 870               | 671                       | 532                        |
| Frame rate [fps]           | 65                      | 90                     | 30                   | 30                      | 25               | 1 kHz<br>@ 1000 pts | 10                | 30                        | 2000 pixel/s               |
| Maximum distance<br>[m]    | 50                      | 40                     | 4.2                  | 13(iToF)<br>/ 250(dToF) | 8.2              | 3                   | 100               | 50                        | 150                        |
| Depth uncertainty<br>[%]   | 0.22                    | 0.51                   | 0.2                  | 0.38<br>/ N/A           | 3.29             | 0.05                | 0.14              | N/A                       | 0.1                        |
| Chip power [mW]            | 42.7                    | 33.5                   | 650                  | 2500                    | 205.74           | 28.3                | 530               | 77.6                      | N/A                        |

|                            | This Work               | B. Park                | C. S. Bamji          | T. Okino                | E. Manuzzato     | M. Perenzoni        | C. Niclass        | S. W                      |                            |
|----------------------------|-------------------------|------------------------|----------------------|-------------------------|------------------|---------------------|-------------------|---------------------------|----------------------------|
|                            |                         | SSC-L20 [1]            | ISSCC18 [2]          | ISSCC20 [3]             | ISSCC22 [4]      | SSC-L20 [5]         | JSSC14 [6]        | J.                        |                            |
| Photodetector              | SPAD                    | SPAD                   | PD                   | SPAD<br>(Vertical)      | SPAD             | SPAD                | SPAD              | STAD                      |                            |
| ToF technique              | iToF                    | iToF                   | iToF                 | iToF + dToF             | dToF             | dToF                | dToF              | dToF                      | dToF                       |
| Key feature                | 2-tap pulse<br>counter  | 1-tap pulse<br>counter | 2-tap<br>photogate   | 1-tap pulse<br>counter  | Per-pixel<br>TDC | Per-column<br>TDC   | Per-column<br>TDC | 16-Shared<br>TDC          | 128-Shared<br>TDC          |
| Technology [nm]            | 110                     | 110                    | 65 (BSI)             | 65                      | 110              | 150                 | 180               | 40 / 90                   | 45 / 65                    |
| Pixel resolution           | 64 × 64                 | 64 × 64                | 1024 × 1024          | 1200 × 900              | 64 × 64          | 50 × 40<br>(2-SPAD) | 202 × 96          | 256 × 256<br>(4 × 4 SPAD) | 256 × 256<br>(16 × 8 SPAD) |
| Pixel pitch [µm]           | 32                      | 32                     | 3.5                  | 6                       | 48               | 38.5 × 33.5         | N/A               | 9.2<br>(36.8 × 36.8)      | 19.8<br>(316.8 × 158.4)    |
| Fill factor [%]            | 26.3                    | 17.3                   | 100<br>(with μ-lens) | N/A                     | 12.9             | 4.8-15.3            | 70                | 51                        | 31.3                       |
| Background [klx]           | <b>120</b> <sup>†</sup> | $90^{\dagger}$         | 25                   | N/A                     | 30               | 18                  | 100 <sup>†</sup>  | 1                         | 3                          |
| Emitter wavelength<br>[nm] | 850                     | 850                    | 860                  | N/A                     | 905              | 650                 | 870               | 671                       | 532                        |
| Frame rate [fps]           | 65                      | 90                     | 30                   | 30                      | 25               | 1 kHz<br>@ 1000 pts | 10                | 30                        | 2000 pixel/s               |
| Maximum distance<br>[m]    | 50                      | 40                     | 4.2                  | 13(iToF)<br>/ 250(dToF) | 8.2              | 3                   | 100               | 50                        | 150                        |
| Depth uncertainty<br>[%]   | 0.22                    | 0.51                   | 0.2                  | 0.38<br>/ N/A           | 3.29             | 0.05                | 0.14              | N/A                       | 0.1                        |
| Chip power [mW]            | 42.7                    | 33.5                   | 650                  | 2500                    | 205.74           | 28.3                | 530               | 77.6                      | N/A                        |

|                            | This Work              | B. Park<br>SSC-L20 [1] | C. S. Bamji<br>ISSCC18 [2] | T. Okino<br>ISSCC20 [3] | E. Manuzzato<br>ISSCC22 [4] | M. Perenzoni<br>SSC-L20 [5] | C. Niclass<br>JSSC14 [6] | S. W                      | XEN                        |
|----------------------------|------------------------|------------------------|----------------------------|-------------------------|-----------------------------|-----------------------------|--------------------------|---------------------------|----------------------------|
| Photodetector              | SPAD                   | SPAD                   | PD                         | SPAD<br>(Vertical)      | SPAD                        | SPAD                        | SPAD                     | BEAD                      | STAD                       |
| ToF technique              | iToF                   | iToF                   | iToF                       | iToF + dToF             | dToF                        | dToF                        | dToF                     | dToF                      | dToF                       |
| Key feature                | 2-tap pulse<br>counter | 1-tap pulse<br>counter | 2-tap<br>photogate         | 1-tap pulse<br>counter  | Per-pixel<br>TDC            | Per-column<br>TDC           | Per-column<br>TDC        | 16-Shared<br>TDC          | 128-Shared<br>TDC          |
| Technology [nm]            | 110                    | 110                    | 65 (BSI)                   | 65                      | 110                         | 150                         | 180                      | 40 / 90                   | 45 / 65                    |
| Pixel resolution           | 64 × 64                | 64 × 64                | 1024 × 1024                | 1200 × 900              | 64 × 64                     | 50 × 40<br>(2-SPAD)         | 202 × 96                 | 256 × 256<br>(4 × 4 SPAD) | 256 × 256<br>(16 × 8 SPAD) |
| Pixel pitch [µm]           | 32                     | 32                     | 3.5                        | 6                       | 48                          | 38.5 × 33.5                 | N/A                      | 9.2<br>(36.8 × 36.8)      | 19.8<br>(316.8 × 158.4)    |
| Fill factor [%]            | 26.3                   | 17.3                   | 100<br>(with u-lens)       | N/A                     | 12.9                        | 4.8-15.3                    | 70                       | 51                        | 31.3                       |
| Background [klx]           | 120 <sup>†</sup>       | 90 <sup>†</sup>        | 25                         | N/A                     | 30                          | 18                          | $100^{\dagger}$          | 1                         | 3                          |
| Emitter wavelength<br>[nm] | 850                    | 850                    | 860                        | N/A                     | 905                         | 650                         | 870                      | 671                       | 532                        |
| Frame rate [fps]           | 65                     | 90                     | 30                         | 30                      | 25                          | 1 kHz<br>@ 1000 pts         | 10                       | 30                        | 2000 pixel/s               |
| Maximum distance<br>[m]    | 50                     | 40                     | 4.2                        | 13(iToF)<br>/ 250(dToF) | 8.2                         | 3                           | 100                      | 50                        | 150                        |
| Depth uncertainty<br>[%]   | 0.22                   | 0.51                   | 0.2                        | 0.38<br>/ N/A           | 3.29                        | 0.05                        | 0.14                     | N/A                       | 0.1                        |
| Chip power [mW]            | 42.7                   | 33.5                   | 650                        | 2500                    | 205.74                      | 28.3                        | 530                      | 77.6                      | N/A                        |

|                            | This Work              | B. Park<br>SSC-L20 [1] | C. S. Bamji<br>ISSCC18 [2] | T. Okino<br>ISSCC20 [3] | E. Manuzzato<br>ISSCC22 [4] | M. Perenzoni<br>SSC-L20 [5] | C. Niclass<br>JSSC14 [6] | S. W                      | XO                         |
|----------------------------|------------------------|------------------------|----------------------------|-------------------------|-----------------------------|-----------------------------|--------------------------|---------------------------|----------------------------|
| Photodetector              | SPAD                   | SPAD                   | PD                         | SPAD<br>(Vertical)      | SPAD                        | SPAD                        | SPAD                     | JI AD                     | STAD                       |
| ToF technique              | iToF                   | iToF                   | iToF                       | iToF + dToF             | dToF                        | dToF                        | dToF                     | dToF                      | dToF                       |
| Key feature                | 2-tap pulse<br>counter | 1-tap pulse<br>counter | 2-tap<br>photogate         | 1-tap pulse<br>counter  | Per-pixel<br>TDC            | Per-column<br>TDC           | Per-column<br>TDC        | 16-Shared<br>TDC          | 128-Shared<br>TDC          |
| Technology [nm]            | 110                    | 110                    | 65 (BSI)                   | 65                      | 110                         | 150                         | 180                      | 40 / 90                   | 45 / 65                    |
| Pixel resolution           | 64 × 64                | 64 × 64                | 1024 × 1024                | 1200 × 900              | 64 × 64                     | 50 × 40<br>(2-SPAD)         | 202 × 96                 | 256 × 256<br>(4 × 4 SPAD) | 256 × 256<br>(16 × 8 SPAD) |
| Pixel pitch [µm]           | 32                     | 32                     | 3.5                        | 6                       | 48                          | 38.5 × 33.5                 | N/A                      | 9.2<br>(36.8 × 36.8)      | 19.8<br>(316.8 × 158.4)    |
| Fill factor [%]            | 26.3                   | 17.3                   | 100<br>(with u-lens)       | N/A                     | 12.9                        | 4.8-15.3                    | 70                       | 51                        | 31.3                       |
| Background [klx]           | 120 <sup>†</sup>       | 90 <sup>†</sup>        | 25                         | N/A                     | 30                          | 18                          | 100 <sup>†</sup>         | 1                         | 3                          |
| Emitter wavelength<br>[nm] | 850                    | 850                    | 860                        | N/A                     | 905                         | 650                         | 870                      | 671                       | 532                        |
| Frame rate [fps]           | 65                     | 90                     | 30                         | 30                      | 25                          | 1 kHz<br>@ 1000 pts         | 10                       | 30                        | 2000 pixel/s               |
| Maximum distance<br>[m]    | 50                     | 40                     | 4.2                        | 13(iToF)<br>/ 250(dToF) | 8.2                         | 3                           | 100                      | 50                        | 150                        |
| Depth uncertainty<br>[%]   | 0.22                   | 0.51                   | 0.2                        | 0.38<br>/ N/A           | 3.29                        | 0.05                        | 0.14                     | N/A                       | 0.1                        |
| Chip power [mW]            | 42.7                   | 33.5                   | 650                        | 2500                    | 205.74                      | 28.3                        | 530                      | 77.6                      | N/A                        |

# Conclusion

- 64 x 64 SPAD-based iToF sensor with 2-tap analog pulse
- Time-gated photon counting method
  - Compact pixel pitch (32 µm), high fill factor (26.3 %)
  - Large detection range (50 m), low depth uncertainty (0.22 %)
  - High frame rate (65 fps), high sunlight tolerance (120 klx)
    > Suitable for outdoor applications
- This work shows high potential of SPAD-based iToF sensors



#### References

- [1] B. Park et al., "A 40-m range 90-frames/s CMOS time-of-flight sensor usin pixel time-gated pulse counter," SSC-L, vol. 3, pp. 422–425, 2020.
- [2] C. S. Bamji et al., "1Mpixel 65 nm BSI 320 MHz demodulated TOF image sensor with 3 μm global shutter pixels and analog binning," ISSCC Dig. Tech. Papers, pp. 94–96, Feb. 2018.
- [3] T. Okino et al., "A 1200×900 6 µm 450 fps geiger-mode vertical avalanche photodiodes CMOS image sensor for a 250 m time-of-flight ranging system using direct-indirect-mixed frame synthesis with configurable-depth-resolution down to 10 cm," ISSCC Dig. Tech. Papers, pp. 96– 98, Feb. 2020.
- [4] E. Manuzzato et al., "A 64×64-Pixel Flash LiDAR SPAD Imager with distributed Pixel-to-Pixel correlation for background rejection, tunable automatic pixel sensitivity and first-last event detection strategies for space applications," ISSCC Dig. Tech. Papers, pp. 96–98, Feb. 2022.



#### References

- [5] M. Perenzoni et al., "A fast 50 × 40-pixels single-point dToF SPAD sence counting and programmable ROI TDCs, with σ <4 mm at 3 m up to 18 klux of background and SSC-L, vol. 3, pp. 86–89, 2020.</li>
- [6] C. Niclass et al., "A 0.18-µm CMOS SoC for a 100-m-Range 10-Frame/s 200×96-pixel timeof-flight depth sensor," JSSC, vol. 49, No. 1, pp. 315–330, Jan. 2014.
- [7] S. W. Hutchings et al., "A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging," JSSC, vol. 54, no. 11, pp. 2947–2956, Nov. 2019.
- [8] A. R. Ximenes et al., "A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology," JSSC, vol. 54, no. 11, pp. 3203–3214, Nov. 2019.

#### References

- [5] M. Perenzoni et al., "A fast 50 × 40-pixels single-point dToF SPAD sence counting and programmable ROI TDCs, with σ <4 mm at 3 m up to 18 klux of balance counting SSC-L, vol. 3, pp. 86–89, 2020.</li>
- [6] C. Niclass et al., "A 0.18-µm CMOS SoC for a 100-m-Range 10-Frame/s 200×96-pixel timeof-flight depth sensor," JSSC, vol. 49, No. 1, pp. 315–330, Jan. 2014.
- [7] S. W. Hutchings et al., "A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging," JSSC, vol. 54, no. 11, pp. 2947–2956, Nov. 2019.
- [8] A. R. Ximenes et al., "A modular, direct time-of-flight depth sensor in 45/65-nm 3-D-stacked CMOS technology," JSSC, vol. 54, no. 11, pp. 3203–3214, Nov. 2019.

# Thank you for your attention !